东南亚各国正在考虑将氨作为燃料,用于燃煤电厂的联合燃烧,这一做法得到了日本的大力推广。然而,氨联合燃烧的成本非常高,大规模部署的可行性有限,并且有可能延迟部署现有的成本效益高、国内和可扩展的可再生能源选项。本文将探讨东南亚地区的共同火灾及其风险。
If a hydrogen economy is to become a reality, along with efficient and decarbonized production and adequate transportation infrastructure, deployment of suitable hydrogen storage facilities will be crucial. This is because, due to various technical and economic reasons, there is a serious possibility of an imbalance between hydrogen supply and demand. Hydrogen storage could also be pivotal in promoting renewable energy sources and facilitating the decarbonization process by providing long duration storage options, which other forms of energy storage, such as batteries with capacity limitations or pumped hydro with geographical limitations, cannot meet. However, hydrogen is not the easiest substance to store and handle. Under ambient conditions, the extremely low volumetric energy density of hydrogen does not allow for its efficient and economic storage, which means it needs to be compressed, liquefied, or converted into other substances that are easier to handle and store. Currently,there are different hydrogen storage solutions at varying levels of technology, market, and commercial readiness, with different applications depending on the circumstances. This paper evaluates the relativemerits and techno-economic features of major types of hydrogen storage options: (i) pure hydrogen storage, (ii) synthetic hydrocarbons, (iii) chemical hydrides, (iv) liquid organic hydrogen carriers, (v) metal hydrides, and (vi) porous materials. The paper also discusses the main barriers to investment in hydrogen storage and highlights key features of a viable usiness model, in particular the policy and regulatory framework needed to address the primary risks to which potential hydrogen storage investors are exposed.
G7中只有日本没有明确实际废止煤炭火力的年限。那个日本作为煤炭火力延长生命的王牌是氨利用。煤氨混烧主要有四个课题。希望11月在埃及举办的COP27和明年的G7上,日本能展示出脱碳的具体路线p>
日本和澳大利亚承诺共同支持加快低排放和零排放技术的开发和商业化,向净零排放过渡的举措。这些技术包括:清洁燃料氨、清洁氢气和可再生能源(或具有大量碳捕获、利用和储存的化石燃料)生产的衍生物、碳捕获、使用和储存、碳回收、低排放钢铁和铁矿石。两国将提供适当的财政支持,以推进这些领域的举措。这一伙伴关系建立在已经确立的倡议和声明的基础上,如氢能供应链、日本-澳大利亚能源和资源对话以及澳大利亚-日本氢能和燃料电池合作联合声明。
机械能的输入是加速化学反应或开辟新反应途径的新途径。氨合成通常需要400-500°C和200-300大气压的压力。然而,如果该反应在球磨机中用合适的催化剂在研磨下进行,即使在室温和大气压下,氮和氢也可以转化为氨,尽管其转化率远低于技术过程中的转化率。机械催化反应并不局限于氨合成,因为我们已经发现许多其他反应受益于研磨。
在对抗饥饿方面取得了突破,获得了三项诺贝尔奖,年产量达到1.5亿吨,但这仍然是一个棘手的研究课题:100多年来,化学工业一直在使用Haber Bosch工艺将大气中的氮和氢转化为氨,氨是矿物肥料和许多其他化学产品的重要成分。马克斯·普朗克Kohlenforschung研究所的科学家现在发现了一种令人惊讶的简单方法,可以在环境温度下——甚至在大气压下——生产氨,因此在比Haber Bosch工艺所需的条件温和得多的条件下。反应物通过研磨用于促进惰性氮气和氢气之间反应的催化剂的研磨机。结果是一股稀薄但连续的氨流。
RFF的Jay Bartlett和Alan Krupnick评估了“蓝色”和“绿色”氢气的生产、储存和运输成本,以确定减少工业原料排放的近期和长期方法。,这篇文章是一系列文章的一部分,我们在该系列文章中阐述了最近的一份报告,并探讨了脱碳氢与其他减少碳排放的选择相比如何,即碳捕获、利用和储存(CCUS)和零碳电力电气化。通过评估脱碳氢与其他两种选择的对比,我们探索了氢在何时、何地以及如何成为一种具有成本效益的还原CO的方法₂ 排放。之前的博客文章将蓝氢与最终用途CCUS进行了比较,将绿氢与零碳功率进行了比较。本文及后续文章将考虑工业和电力部门脱碳的技术选择和有效政策机制。